Inferring gene networks from time series microarray data using dynamic Bayesian networks

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inferring gene networks from time series microarray data using dynamic Bayesian networks

Dynamic Bayesian networks (DBNs) are considered as a promising model for inferring gene networks from time series microarray data. DBNs have overtaken Bayesian networks (BNs) as DBNs can construct cyclic regulations using time delay information. In this paper, a general framework for DBN modelling is outlined. Both discrete and continuous DBN models are constructed systematically and criteria f...

متن کامل

Bayesian Inference of Genetic Regulatory Networks from Time Series Microarray Data Using Dynamic Bayesian Networks

Reverse engineering of genetic regulatory networks from time series microarray data are investigated. We propose a dynamic Bayesian networks (DBNs) modeling and a full Bayesian learning scheme. The proposed DBN directly models the continuous expression levels and also is associated with parameters that indicate the degree as well as the type of regulations. To learn the network from data, we pr...

متن کامل

Using Regularized Dynamic Correlation to Infer Gene Dependency Networks from Time-series Microarray Data

Graphical models allow to understand regulatory interactions among genes and gene products in a cell, and hence contribute to an enhanced understanding of systems biology. Here we investigate a graphical model that treats the observed gene expression over time as realizations of random curves. This approach is centered around a regularized estimator of dynamical pairwise correlation that takes ...

متن کامل

Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data

MOTIVATION High-throughput technologies have facilitated the acquisition of large genomics and proteomics datasets. However, these data provide snapshots of cellular behavior, rather than help us reveal causal relations. Here, we propose how these technologies can be utilized to infer the topology and strengths of connections among genes, proteins and metabolites by monitoring time-dependent re...

متن کامل

Uncovering Gene Regulatory Networks from Time-Series Microarray Data with Variational Bayesian Structural Expectation Maximization

We investigate in this paper reverse engineering of gene regulatory networks from time-series microarray data. We apply dynamic Bayesian networks (DBNs) for modeling cell cycle regulations. In developing a network inference algorithm, we focus on soft solutions that can provide a posteriori probability (APP) of network topology. In particular, we propose a variational Bayesian structural expect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Briefings in Bioinformatics

سال: 2003

ISSN: 1467-5463,1477-4054

DOI: 10.1093/bib/4.3.228